Linking Cancer Surveillance and Environmental Data

Radium in Drinking Water and the Incidence of Osteosarcoma P Cohn, R Skinner, S Burger, J Fagliano, J Klotz

Jerald Fagliano, M.P.H., Ph.D.

New Jersey Department of Health and Senior Services

Purposes of Linking Health and Environmental Data

- To understand relationship between environmental hazards and human health
- To provide scientific basis for public health interventions
- > To evaluate effectiveness of interventions

Radium

- Naturally-occurring radioactive element
- Generated by the radioactive decay of naturally-occurring uranium and thorium
- > Three isotopes with different half-lives:
 - Radium-224 (3.6 days)
 - Radium-226 (1,620 years)
 - Radium-228 (6.7 years)

Radium in New Jersey Groundwater

- Occurs naturally in shallow aquifers of southern and central New Jersey
- Routine testing procedure did not include short-lived isotopes before 1997
- NJDEP and USGS surveys in 1997-2000 include short-lived isotopes

Health Effects of Radium Exposure

- > Exposure to high levels of radium causes:
 - Osteosarcoma and other bone cancers
 - Leukemias
- Uncertain health risk at low exposure
- USEPA: lifetime excess cancer risk of 1 to 3 cases per 10,000 exposed, at MCL for radium of 5 pCi/L

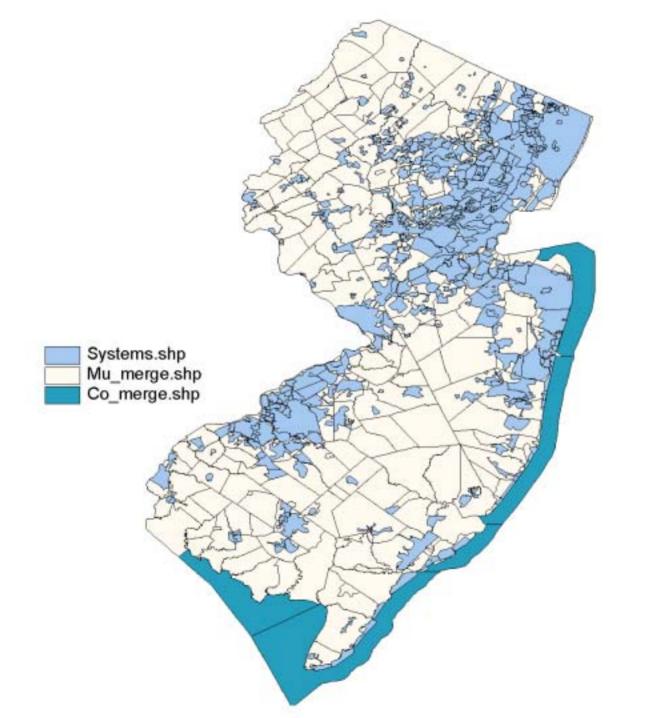
Previous Epidemiologic Studies

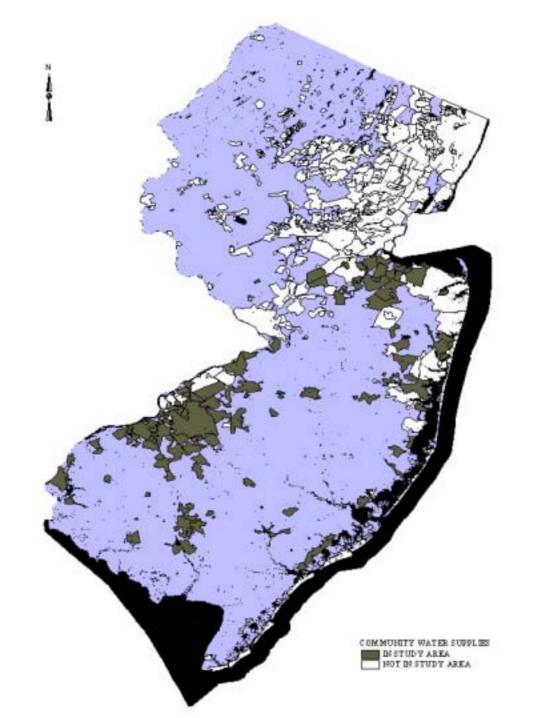
- > lowa/Illinois (1966)
 - Increased bone cancer mortality
- > Ontario (1994, 1996)
 - Increased osteosarcoma in males
- >Wisconsin (1995, 2002)
 - I: Increased risk of osteosarcoma in females
 - II: No increased risk

Osteosarcoma

- Rare cancer of the bone
 - 3 persons per million each year
 - Peaks in adolescence and > 50 yrs
- Known risk factors:
 - Radium and radiotherapy
 - Certain chemotherapeutic agents
 - Certain genetic syndromes affecting bone growth

Study Questions


- Understanding exposure-disease:
 - Is the incidence of osteosarcoma higher in areas with elevated levels of radium in drinking water?
- Scientific basis of MCL:
 - Is USEPA's risk assessment accurate?
 - Is MCL as protective as intended?


Study Design

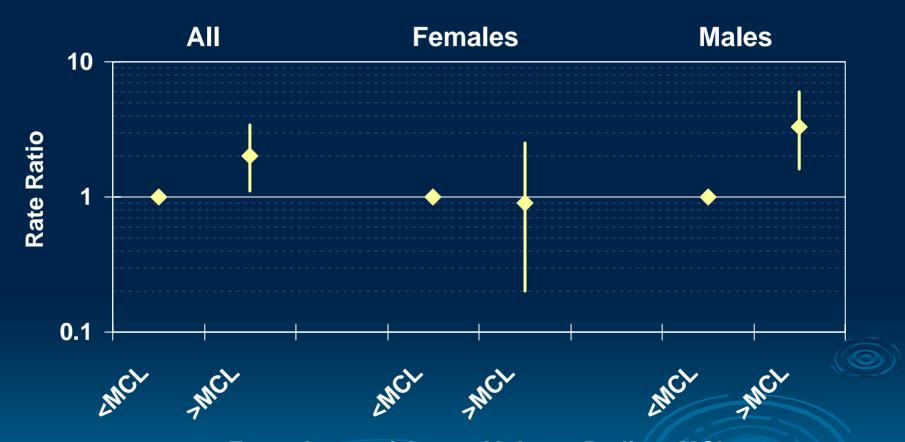
- Map water systems and characterize exposure levels
- Compute populations exposed based on overlay of water system and census tract boundaries
- Assign cases (1979-1998) to water systems based on address at diagnosis
- Compare osteosarcoma incidence rates, among populations with different levels of radium in drinking water

System Areas in the Study

- All community water supplies in southern and central New Jersey, except:
 - insufficient data
 - major, recent changes in well use
 - use of surface water
 - service in shore areas
 - added fluoride

Systems Grouped Using Two Exposure Measures

- Greater or less than either gross alpha or radium MCLs
- Radium-228 potency equivalent level (pCi/L), based on amounts and cancercausing potencies of three radium isotopes

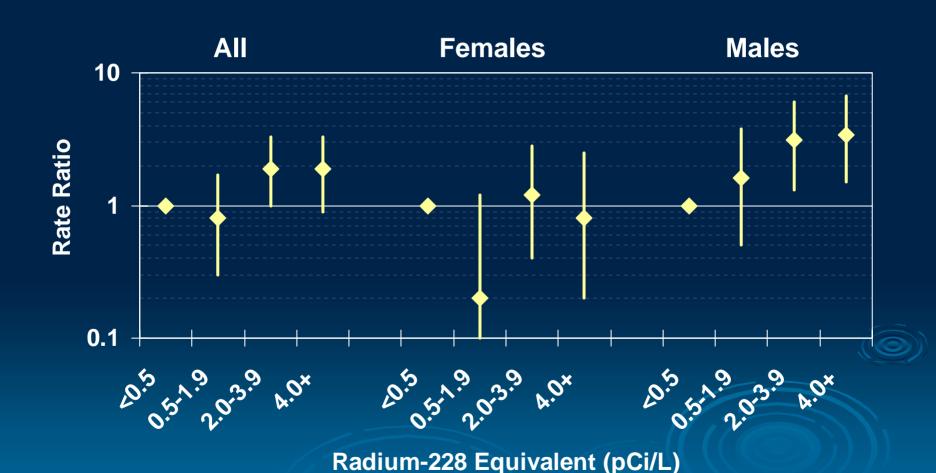

Systems and Populations by Exposure Group

Exposure Group	# Systems/ Subsystems	Total Population		
Gross alpha and radium MCLs				
< MCLs	100	1,287,336		
≥ either MCL	17	135,638		
Radium-228 potency equivalents, pCi/L				
<u><</u> 0.5	76	979,001		
0.5-1.9	14	168,229		
2.0-3.9	12	147,272		
<u>≥</u> 4.0	15	128,472		

Study Cases, 1979-1998

Age	Males	Females
0-9	0	1
10-24	21	15
25-49	4	6
50+	14	14
Total	39	36

Incidence Rate Ratios Relative to MCLs



Exceedence of Gross Alpha or Radium MCL

Incidence Rate Ratios Relative to MCLs

	Exposure	Рор	N	Annual Rate Per Million	Rate Ratio (95% CI)
All	<mcl< td=""><td>1,287,336</td><td>62</td><td>2.4</td><td>1.0</td></mcl<>	1,287,336	62	2.4	1.0
	<u>></u> MCL	135,638	13	4.8	2.0 (1.1, 3.4)
All	<mcl< td=""><td>617,223</td><td>29</td><td>2.3</td><td>1.0</td></mcl<>	617,223	29	2.3	1.0
Males	<u>></u> MCL	65,257	10	7.7	3.3 (1.6, 6.0)
All	<mcl< td=""><td>670,113</td><td>33</td><td>2.5</td><td>1.0</td></mcl<>	670,113	33	2.5	1.0
Females	<u>></u> MCL	70,381	3	2.1	0.9 (0.2, 2.5)

Incidence Rate Ratios By Ra-228 Equivalent Levels

Incidence Rate Ratios By Ra-228 Equivalent Levels

	Ra-228 Equivalent (pCi/L)	Рор	N	Annual Rate Per Million	Rate Ratio (95% CI)
All	< 0.5	979,001	45	2.3	1.0
	0.5-1.9	168,229	6	1.8	0.8 (0.3, 1.7)
	2.0-3.9	147,272	13	4.4	1.9 (1.0, 3.3)
	<u>≥</u> 4.0	128,472	11	4.3	1.9 (0.9, 3.3)
All	< 0.5	471,462	18	1.9	1.0
Males	0.5-1.9	80,907	5	3.1	1.6 (0.5, 3.8)
	2.0-3.9	68,213	8	5.9	3.1 (1.3, 6.0)
	<u>≥</u> 4.0	61,898	8	6.5	3.4 (1.5, 6.7)
All	< 0.5	507,539	27	2.7	1.0
Females	0.5-1.9	87,322	1	0.6	0.2 (0.0, 1.2)
	2.0-3.9	79,059	5	3.2	1.2 (0.4, 2.8)
	<u>≥</u> 4.0	66,574	3	2.3	0.8 (0.2, 2.5)

Lifetime Excess Cancer Risk

Data Source	Exposure Level	LECR per 10,000
USEPA (2000) Risk Assessment	5 pCi/L radium MCL	1.0 to 2.9
lowa/Illinois (1966)	≥ 3 pCi/L radium-226	1.9
Ontario (1994, 1996)	≥ 0.8 pCi/L	1.3
Wisconsin (1995)	≥ 9 pCi/L	0.7
Wisconsin (2002)	> 5 pCi/L	No increase
New Jersey	> MCL	1.7
(2003)	≥ 2 pCi/L radium-228 eq.	1.5

Conclusions

- Linking health surveillance and monitoring data enables us to:
 - Show association between radium in drinking water and increased rate of osteosarcoma in males but not females
 - Confirm the USEPA health risk assessment based on highly exposed occupational and medically-exposed cohorts

Implications for Practice

- Testing procedures now include shortlived radium-224
- Water supplies are assessing compliance with MCLs and installing treatment systems as needed
- Private well testing mandates are identifying wells of concern
 - Radium is easily removed by properly maintained water softeners